May 2017

Helsinki Consortium Meeting in May 2017, and the Conventional Energy Production Use-Case

The second (sixth overall) full consortium meeting of 2017 was held between 8th and 10th of May. This time it was hosted by VTT at their new Center for Nuclear Safety located in Espoo, Finland. The three day event gathered 65 participants from all of the participating countries. The program was more technologically oriented and contained a long open space session, where partners could present their work within the project. The tight program allowed some time to enjoy the wonderful Finnish spring weather.

The wonderful Finnish spring
The wonderful Finnish spring

Finnish use-case was prominently on display at the Open Space session at the MANTIS consortium meeting. The floor in the first open space room was dedicated to the Finnish use case. Presented were Nome, Wapice, Fortum, VTT and Lapland University of Applied Sciences (UAS). Each partner presented their work done in the Finnish use case. Wapice and Fortum presented their HMIs (IoT Ticket and TOPi respectively). Nome and VTT presented their measurement systems (NMAS and the affordable sensor research respectively) and finally Lapland UAS provided the database and REST interface that allows each partner to share and access data beyond organizational boundaries. The second room had most use cases represented. Of note was XLABs common MANTIS user interface demo that can be connected to the Finnish use case platform.

Open space session at Helsinki Consortium meeting
Open space session at Helsinki Consortium meeting

The Finnish use case is centered on a flue gas recirculation blower located in Fortum’s Järvenpää power plant. The blower is classified as a critical component in the energy production process and is monitored closely. In this use case Wapice, Nome and VTT have all provided their own sensors or virtual sensors to monitor the performance and condition of the blower. In addition, Lapland UAS has a few Wzzard sensors, made by B+B Electronics/Advantech, provide some additional measurement data bulk. However these are not related to the Järvenpää case. This measurement data is stored, using the REST interface developed by Lapland UAS, in the MANTIS database that is based on the MIMOSA data model.

Flue gas recirculation blower in Fortum’s TOPi Proview browser
Flue gas recirculation blower in Fortum’s TOPi Proview browser

The REST interface and MIMOSA database mapper provides a simple an interface, which is both easy to use and to integrate, between different applications and systems. It provides basic CRUD –functionalities and contains a mapper that maps measurement system specific data formats and structures into MIMOSA compliant data structures to ensure interoperability and compatibility with the MIMOSA data model. It is widely in use in the Finnish use case and research partners from both Slovenia and Hungary have shown interest towards utilizing MIMOSA in their use case.

A diagram of the Finnish use case
A diagram of the Finnish use case

SmartG presentation in Hannover Messe

Goizper and IK4-TEKNIKER will be present at the Hannover Messe from 24 to 28 April 2017‎ presenting Smart G, a data acquisition module for clutch-brake monitoring.

Clutch-brake systems produced by Goizper are key components in cutting, forming, folding and press machines.

The aim of this presentation is to show how incorporation of the Smart G module can convert a clutch-brake system into a monitorable smart component, which includes self-diagnostics capabilities that can provide information about the current state of the component and predict failures before they occur.

Communications modules incorporated in the Smart G component provides capabilities to:

  • Remotely monitor the component
  • Send the data to a cloud platform where all historic data are stored.

Having the data of Goizper’s clutch-brakes fleet on a cloud platform will provide the possibility to use more advanced techniques and algorithms in order to predict failures and/or remaining useful life of key components of the system.

Benefits are two-fold: Goizper will drastically improve the knowledge about their equipment to improve reliability of their products and the maintenance services provided to customers, while customers will benefit from a reduced downtime of the machines and more cost-effective maintenance strategy.

Goizper and Tekniker’s work on failure prediction and diagnosis, as well as cloud platform development, have received funding from the European Union under the MANTIS project.

 

Smart G concept block diagram
Figure 1. Smart G concept block diagram.

 

SmartG-status
Figure 2. General status of the machine.

 

SmartG-breaking

SmartG-clutching

Figures 3 and 4. Braking and Clutching processes performance

SmartG-alarms
Figure 5. Active alarms and alarms history

 

SmartG-productA
Figure 6. Product pictures
SmartG-procuctB