Deep learning for predictive maintenance

There are two extreme approaches to predicting failures for predictive maintenance. The white box approach relies on manually constructed physical and mechanical models for predicting the failures. The black box approach, on the other hand, relies on failure prediction models constructed using statistical and machine learning methods based on the data gathered from a running system. The figure below illustrates such data driven failure prediction for a machine monitored by three sensors.

data driven failure prediction
data driven failure prediction

Machine learning algorithms are used to identify failure patterns in the sensor data that precede a machine failure. When such patterns are observed in operation, an alarm can be triggered to take corrective action to prevent or mitigate the eminent failure. For example, failure predictions can be used to optimize the maintenance actions, such as scheduling the service engineers or managing the spare parts storage to reduce the downtime cost.

Automatic feature extraction

An important part of modeling a failure predictor is selecting or constructing the right features, i.e. selecting existing features from the data set, or constructing derivative features, which are most suitable for solving the learning task.

Traditionally, the features are selected manually, relying on the experience of process engineers who understand the physical and mechanical processes in the analyzed system. Unfortunately, manual feature selection suffers from different kinds of bias and is very labor intensive. Moreover, the selected features are specific to a particular learning task, and cannot be easily reused in a different task (e.g. the features which are effective for predicting failures in one production line will not necessarily be effective in a different line).

Deep learning techniques investigated in the MANTIS project offer an alternative to manual feature selection.  It refers to a branch of machine learning based on algorithms which automatically extract abstract features from the raw data that are most suitable for solving a particular learning task. Predictive maintenance can benefit from such automatic feature extraction to reduce effort, cost and delay that are associated with extracting good features.