Human-machine interaction in MANTIS project

Proactive, collaborative and context-aware HMI

One of the objectives of the MANTIS project is to design and develop the human-machine interface (HMI) to deal with the intelligent optimisation of the production processes through the monitoring and management of its components. MANTIS HMI should allow intelligent, context-aware human-machine interaction by providing the right information, in the right modality and in the best way for users when needed. To achieve this goal, the user interface should be highly personalised and adapted to each specific user or user role. Since MANTIS comprises eleven distinct use cases, the design of such HMI presents a great challenge. Any unification of the HMI design may impose the constraints that could result in the HMI with a poor usability.

Our approach, therefore, focuses on the requirements that are common to most of the use cases and are specific for proactive and collaborative maintenance. A generic MANTIS HMI was specified to the extent that does not introduce any constraints for the use cases, but at the same time describes the most important features of the MANTIS HMI that should be considered when designing the HMI in individual use cases.

MANTIS HMI specifications are the result of refinement of usage scenarios provided by the industrial partners, taking the general requirements of MANTIS platform into account. Functional specifications describe the HMI functionalities, present in most use cases and abstracted from the specific situation of every single use case.

We describe a generic static model that can be used together with the requirement specifications of each individual use case to formalize the structure of the target HMI implementation. The model has been conceived, in particular, with two ideas in mind: (i) to provide means that would help to identify the HMI content elements and their relationships of a given use case and (ii) to unify (as much as possible) the HMI structure of different use cases, which is useful for comparison of implementations and exchange of good practices. When setting up the model structure we follow the concepts of descriptive models applied in task analysis and add specifics of MANTIS, denoted as MANTIS high-level tasks. For each of these high-level tasks, we provided a list of functionalities supporting them.

MANTIS human-machine interaction comprises five main aspects:

  • User interfaces;
  • Users;
  • MANTIS platform;
  • Production assets; and
  • Environment.

Through their user interfaces, several different users within the use case communicate with MANTIS platform, which in term communicates with production assets. Interaction can take place in both directions. Users can not only access the information, retrieved from production assets and stored on the platform but provide an input to the MANTIS system as well. They can initiate an operation which is then carried out by the platform, such as rescheduling maintenance task, or respond to a system triggered operation, for example, alarms. On the other hand, through the MANTIS platform, users can also communicate among themselves. In addition to the straightforward communication in terms of the textual or video chat functions, the users can also communicate via established workflows.

The last but not least main part of the interaction is also the environment. Although it can be treated neither as a direct link between the user and the system nor as a part of communication among the users, the environment can influence the human-machine interaction through the context-aware functionalities.

From the users’ point of view, the human-machine interaction within the MANTIS system supports five main high-level user tasks associated with proactive and collaborative maintenance:

  • Monitoring production assets;
  • Data analysis;
  • Maintenance tasks scheduling;
  • Reporting; and
  • Communication.

While monitoring production assets, data analysis and maintenance task scheduling are vital for proactive maintenance, reporting and communication enable collaboration among different user roles. Each of these tasks is carried out by a number of MANTIS specific functionalities that can be classified as user input, system output, user- or system- triggered operation. These functionalities should cover all the main aspects of MANTIS human-machine interaction and should also be general enough to be applicable to any MANTIS as well as potential future use case.

MANTIS HMI demonstrator

At the MANTIS meeting in Helsinki, the first version of the web based HMI demonstrator, developed in with Angular Dashboard Framework and other Javascript libraries by XLAB, was presented to the MANTIS consortium. Currently it is connected to the MIMOSA database and is demonstrating live data from the FORTUM use case. The HMI is designed as a customizable, user-dependent, responsive multi-widget dashboard, comprising basic read-only widgets, such as graphs and tables. The features of the demonstrator follow the HMI functional specifications and it is designed in the way that can be applied to any use case with MIMOSA database.

The first version of the web-based HMI demonstrator
The first version of the web-based HMI demonstrator

In the near future, many other features will be implemented, including more widget types, dashboard navigation, search function and sharing of data views. Some context-aware features, such as hidden widgets that appear when needed and suggestions of further user actions based on the usage history, will be implemented as well. In addition, general visual design recommendations such as colours, fonts and widgets positioning, described earlier in the project, will be applied.