Blog

Classifying tool images to enhance predictive maintenance

Introduction

Philips Consumer Lifestyle (PCL) is an advanced manufacturing site located in Drachten, the Netherlands. Our organization falls within the Personal Heath business cluster of Philips, and is primarily concerned with the manufacturing of personal electric shavers.

Electric shavers are comprised of two principle component ‘blocks’: a body and a shaving unit. Each shaving unit contains three metallic shaving ‘heads’, which in turn are composed of a shaving blade (the cutting element) and shaver cap (the guard). The focus of the MANTIS project at PCL falls on the production of these shaver caps.

Philips Shaver and components
Philips Shaver and components

An electro-chemical process is used in the manufacturing of shaver caps, where an electric current is passed over the raw input material, which is conductive, in order to cut this material into the desired shape. Production of the shaver caps at PCL is fully automated.

Production Line
Production Line

Precision tooling is required throughout the various stages of shaver cap manufacturing. At present, these tools are built on-site, and are required to be kept in stock so that replacements are available in the event of tooling malfunctions. Having functional tools available around the clock is essential to meet our goal of 100% ‘up-time’ for our assembly lines. However, this is an expensive approach to resolve the problem, both in terms of the additional equipment required and extensive down-time that results from manual tooling replacements. Therefore, the timely maintenance of these tools presents a challenge.

Tool maintenance

Currently the maintenance strategy on the production line for shaver caps is a mixture of reactive and preventive maintenance. In line with the Mantis goal, our goal is to transform this towards a predictive or even a prescriptive maintenance strategy. However, this comes with the need for data. In order to perform maintenance on the tooling at exactly the right moment needed, information is necessary about the tooling to make useful decisions.

The data directly related to the current state of tooling (e.g. degree of wear, damages, etc.) is hard to retrieve in some cases, due to process-specific reasons. In our use case the tooling is delicate and very precise (micron range, difficult geometries), which makes frequent measurements of the tooling difficult and expensive in a mass production environment. Currently, there is only indirect data available about the use of the tools in the production machines, but not about the actual state of the tool itself. These data can be used to estimate, for example, the remaining useful life of a tool, but in order to improve and verify the RUL prediction models, more direct data is necessary.

Tool wear sensor

To solve this matter, a collaboration between the University of Groningen and Philips Consumer Lifestyle has been started in context of the Mantis consortium, with the goal to develop a tool wear sensor based on an optical image system.  A robust setup with a high-resolution sensor will make detailed images of the individual tools.

Tool images and labelling system
Tool images and labelling system

The raw images are preprocessed, where the parts of interest of the tool will be cut out of the image and rotated to form the input for a machine learning algorithm. Next step would be to normalize the pictures so they are more or less comparable.

Since we have no baseline, we asked our maintenance engineers (they are the domain experts) to label all these individual images. Together we choose three specific labels: wear, damage and contamination. The input of the maintenance engineers is used to train the algorithm, but also to assess how well these individual pictures are labelled similar when considering multiple engineers.

Currently, over 1500 pictures are labelled in about a month. Initial results seem to indicate that simple machine learning can outperform human labeling regarding tooling deviations.

If results are good, the trained algorithm will ultimately be used with an automatic calculation engine to run new images through the algorithm. This means that we also have to change the way of work, and provide the maintenance engineers with easy-to-use tools to make these new images, as part of their regular maintenance steps. The outcome of the analysis forms an input for determining the remaining useful life of the tool, in combination with both process and quality data.

Technical workshops of the MANTIS project in Madrid

Nearly 70 participants were able to attend to the three-day MANTIS meeting organized by ACCIONA Construcción S.A. in their premises in Madrid, Spain from the 18th to 20th of January 2017.

The agenda of the meeting was designed keeping in mind the idea of having less informative sessions but more interactive ones to really get fruitful discussions and making decisions for further steps.

Technical workshops of the MANTIS project in Madrid
Technical workshops of the MANTIS project in Madrid

The meeting started with a session chaired by the Project Coordinator to let everybody get a precise idea about the status of the project. Then, most of all the use cases presented the last developments, focusing in the data availability and analytics to be used. Following this session, the Open Space took place where several posters were shown and discussed in small groups. In the afternoon, the first parallels sessions started, covering WP3 and WP5.

The second day was very intense. At the beginning, WP3 and WP5 finalized the discussions that started the day before. Then, it was the turn of WP2 and WP4. Regarding the latter, it is worth to say that there were several sessions aiming very specific technical aspects. In the evening, a joint dinner was organized in a very famous place in Madrid, where an impressive flamenco show was performed.

Technical workshops of the MANTIS project in Madrid
Technical workshops of the MANTIS project in Madrid

On the last day of the meeting, before the conclusion and wrap-up session, WP2 members kept discussing while WP8 session was running in parallel. Finally, the EB meeting took place.

PVTECH publishes 3E’s article on data mining for automatic fault detection and diagnosis from photovoltaic monitoring data

The continuous and systematic analysis of performance data from the monitoring of operational PV power plants is vital to improving the management and thus profitability of those plants over their lifetime. The article draws on an extensive programme undertaken by 3E to assess the performance of a portfolio of European PV power plants it monitors. The article illustrates 3E’s approach to automatic fault detection. It will explore the various data mining methodologies used to gain an accurate understanding of the performance of large-scale PV systems and how that intelligence can be put to the best use for the optimal management of solar assets.

3E’s work on automatic fault detection and diagnosis has received funding from the European Union under the MANTIS project.

Please click here to read the full article.

Modern Internet of Things technologies in industrial condition monitoring

Introduction

Wapice is a Finnish company specialized in providing software and hardware solutions for industrial companies for wide variety of purposes. We have developed remote management and condition monitoring solutions since beginning and our knowledge of this business domain has evolved into our own Internet of Things platform called IoT-Ticket. Today IoT-Ticket is a complete industrial IoT suite that includes everything required from acquiring the data to visualizing and analyzing the asset lifetime critical information.

Why condition monitoring

In predictive maintenance the goal is to prevent unexpected equipment failures by scheduling maintenance actions optimally. When successful, it is possible to reduce unplanned stops in equipment operational usage and save money through higher utilization rate, extended equipment lifetime and personnel and spare part costs. Succeeding in this task requires deep understanding of the asset behaviour, statistical information of the equipment usage and knowledge about the wear models combined with measurements that reveal the equipment current state of health. Earlier these measurements were carried out periodically by trained experts with special equipment, but now the modern IoT technologies are making it possible to gather real time information about the field devices all the time (i.e. condition monitoring). While this increases the availability of data, it creates another challenge: How to process massive amounts of data so that right information is found in the right time. In condition monitoring process the gathered data should optimally be processed so that amount of data transferred towards the uplink decreases while the understanding of the data increases.

Correct architecture leads to process, where only relevant information is traversing uplink in condition monitoring chain
Correct architecture leads to process, where only relevant information is traversing uplink in condition monitoring chain

This article describes how modern IoT technologies help in condition monitoring related processes and how data aggregation solutions makes it possible to share condition monitoring related information between different vendors. This further improves operational efficiency by enabling real time condition monitoring not only in asset level but also in plant or fleet level, where service operators must understand the behaviour and available lifetime of assets coming from different manufacturers.

WRM247+ data collector for edge analysis

The first link in the condition monitoring chain is the hardware and sensors. In order to measure the physical phenomena behind the wear of the asset a set of sensors is required to sample and capture the data from monitored devices. This data must be buffered locally, pre-processed and finally only the crucial information must be transferred to the server, where the physical phenomena can be identified from the signals. Depending on application area a different types and models of sensors are required to capture just the relevant information. Also depending on the physical phenomena a different kind of analysis methods are required. Due to these reasons the various measurement systems have so far been custom tailored according to the target. This approach of course works, but designing custom tailored measurement systems is time consuming and expensive. Our approach to overcome these problems has been to implement such IoT building blocks that adapt into wide variety of purposes and can be easily and flexibly taken into use. One of the cornerstones in our system is the flexibility and user friendliness.

In the hardware side our IoT platform offers several approaches. WRM247+ measurement and communication device is our hardware reference design that allows connecting a wide variety of industrial sensors using either wired or wireless communication methods and also provides local buffering and pre-processing of data as well as communication to the server. Examples of supported standard protocols are CAN, CANOpen, Modbus, ModbusTCP, 1-Wire and digital/analog IOs. This device is an excellent starting point for most common industrial measurement purposes.

WRM247+ Measurement and communication gateway
WRM247+ Measurement and communication gateway

In Mantis project Wapice has been investigating the interoperability of the wireless and wired sensors. In use case 3.3. Conventional Energy Production we will demonstrate the fusion of the wireless Bluetooth Low Energy technology and wired high accuracy vibration measurements. In order to achieve this we have built a support for connecting IEPE standard vibration sensors to the WRM247+ device. The device supports any industrial IEPE standard sensor, which makes it possible to select a suitable sensor according to the application area. Additionally we have also built a support for connecting a network of BLE sensors to the device. In use case the purpose of this arrangement is to gather temperature information around the flue-gas circulation blower using the wireless BLE sensors and perform vibration measurements from the rolling bearing. The temperature measurements reveal possible problems e.g. in lubrication of the bearing and possibly allow actions to be taken before a catastrophic failure happens.

In case WRM247+ device is not suitable for purpose, it is possible to integrate custom devices easily into IoT-Ticket using the REST API available. For this purpose we provide full documentation and free developer libraries for several programming languages. The list of available libraries includes for example C/C++, Python, Qt, Java and C#. Other integration methods include for example OPC or OPC UA and Libelium sensor platform, that supports e.g. wireless LoRa sensors. In addition Wapice has a long experience in designing machine-to-machine (M2M) solutions including PCB layout, embedded software design and protocol implementation, so we also offer you the possibility to get tailored Internet of Things hardware or embedded software that fully suit your needs.

 

Figure describes the interface options in IoT-Ticket architecture
Figure describes the interface options in IoT-Ticket architecture

 

Iot-Ticket portal for Back-End tools

In the back-end side IoT-Ticket provides all necessary tools for visualizing and analyzing data. Our tools are web based and require no installation: Simply login, create and explore!

The Dashboard allows users to interact securely with remote devices, check their status, view reports or get status updates on the current operational performance. It can be utilized in various scenarios – e.g. vehicle tracking, real time plant or machinery monitoring and control. As many Dashboard Pages are available the user can switch between different contexts and drill into information starting from enterprise level to sites, assets and data nodes. The Dashboard also includes two powerful tools for content creation: Interface Designer and Dataflow Editor.

Using the Interface Designer user can raw new elements or add images, gauges, charts, tables, Sankey diagrams, buttons and many other elements onto the Dashboard. Those elements can then be easily connected to data by dragging and dropping Data Tags onto them.

The Dataflow editor is an IEC 61131-3 inspired, web-based, graphical block programming editor that seamlessly integrates to the Interface Designer. A user can design the dataflow by connecting function blocks to implement complex logic operations which then can be used to execute control actions or routed to user interface elements for monitoring purposes.

In Use Case 3.3. Conventional Energy Production Wapice – together with Finnish partners – demonstrates Cloud-to-Cloud integration in Mantis platform using the IoT-Ticket platform tools. In this use case LapinAMK and VTT have jointly setup a Microsoft Azure based MIMOSA data aggregation database. The plan is to share condition monitoring related KPI information through MIMOSA database, which allows sharing data through REST API. Devices may either push data directly to MIMOSA or through local clouds.

Data sharing and aggregation in Mantis platform using Mimosa aggregation database
Data sharing and aggregation in Mantis platform using Mimosa aggregation database

 

IoT-Ticket allows communication to REST sources using Interface Designer graphical flow programming tools. Getting data from REST sources is done by simply creating a background server flow that contains a trigger and REST block. The REST block is configured with username and password that allow authentication to REST source, source URL and REST method that contains XML/JSON payload. From the REST response the data value is parsed and output to data charts or forwarded to further processing. Additionally virtual data tags allow forwarding the data into IoT-Ticket system. By configuring the flow to be run in server mode, the flow is run silently in background all the time. The operation interval is configured using the timer block, which fires the REST block in certain intervals. An example video below shows how Cloud-to-Cloud communication between MIMOSA and IoT-Ticket is established in Use Case 3.3. In this example video sinusoidal test data originates from LapinAMK enterprise and tachometer RPM reading from system under test using WRM247+ device.

The reporting and analytics tools add on to the platform features. The report editor integrates seamlessly into the Dashboard and offers a user the possibility to create or modify content. The user can draw new elements or add image, gauges, charts, tables, Sankey diagrams, buttons and many other elements onto the report. Those elements can then be easily connected to data by dragging and dropping Data Tags onto them. Analytics tool is also integrated to the Dashboard and supports you in understanding your data better.

Benefits of IoT in condition monitoring

Typically condition monitoring related data has been scattered around in separate information systems and it has been very hard or even impossible to create a single view of the all relevant data or correlate between information scattered in different databases. MIMOSA is an information exchange standard that allows classifying and sharing condition monitoring related data between enterprise systems. It answers the data sharing problematics by allowing aggregation of crucial information into single location in a uniform and understandable format. When interfaced with modern REST based information sharing technologies that utilize for example JSON or XML based messaging it is surprisingly easy to collect and share crucial information using single aggregation database. When accompanied with modern web based Industrial IoT tools it is then easy to visualize data, create reports or perform further analysis using only the crucial information available.

In this blog posting I have highlighted some examples how Industrial IoT building blocks help you to gather relevant condition monitoring information, create integrations between data sources and aggregate business relevant information into single location. Focusing on the crucial information allows you to understand better your assets and predict the maintenance needs. This is needed, when optimizing the value of your business!

See more examples in our web pages (www.iot-ticket.com) or YouTube channel https://www.youtube.com/channel/UCJt9c3edgH7cQdSYYIH0YbQ/videos

 

 

MANTIS for Compressor maintenance

With SMARTLINK monitoring program, Atlas Copco makes use of connectivity data and data intelligence to help customer to keep up their production uptime and to improve, when possible, energy efficiency.

With approximately 100,000 machines connected with SMARTLINK, Atlas Copco makes compressors in the field communicate directly with the back office and their service technicians.

Atlas Copco’s SMARTLINK technology allows for remote monitoring of compressors in the fields.
Atlas Copco’s SMARTLINK technology allows for remote monitoring of compressors in the fields.

Customers become more proactive, planning is more efficient and reliability of the compressed air installations is better than ever before.

Customers of SMARTLINK get a monthly overview of machine information, including running hours and the time left before service, thus allowing them to order a service visit at the right time, maintaining maximum uptime and energy efficiency.

With SMARTLINK they can closely follow up on machine warnings via email or SMS. With this information they can take the necessary actions to prevent a breakdown.

With the MANTIS project, Atlas Copco will take proactive maintenance to the next level, by:

  • predicting the remaining useful life of consumables and components that are subject to wear
  • detecting upcoming problems or inefficiencies before they deteriorate
  • remotely diagnosing the root cause of an unplanned shutdown
During the MANTIS project, Atlas Copco will take proactive maintenance to the next level by predicting component lifetime, by detecting anomaly and by perform remote diagnosis of the compressed air installation.
During the MANTIS project, Atlas Copco will take proactive maintenance to the next level by predicting component lifetime, by detecting anomaly and by perform remote diagnosis of the compressed air installation.

Moreover, in order to reduce communication costs, smart sensing technology is being investigated, or how local preprocessing of information can significantly reduce the amount of data to be transmitted.

A major challenge for Atlas Copco is the huge variety of compressor types and operating conditions. To process this enormous amount of information, self-learning techniques are combined with physics-based compressor models. Eventually, these will enable the discovery of new patterns in data, collected on a worldwide scale.

The ultimate goal is to translate these data into actionable information for the global service network.

Service interventions will be planned even better and will be shorter and more efficient. Problems will be fixed in one visit, as technicians will know in advance what to do and what parts to bring.

The results of the project will allow better service planning, shorter visits and first time fix, thus reducing downtime for the end customers and ensuring sustainable productivity
The results of the project will allow better service planning, shorter visits and first time fix, thus reducing downtime for the end customers and ensuring sustainable productivity

For the customer, this means no unnecessary maintenance, less planned or unplanned downtime, therefore achieving maximum productivity.

Analyzing maintenance log data to predict system failures

Cyber-Physical Systems (CPS) are often very complex and require a tight interaction between hardware and software. As it happens in almost any software systems, also CPS  generate different kinds of logs of the activities performed, including correct operations, warnings, errors, etc. Frequently, the logs generated are specific to the different subsystems and are generated independently. Such logs contains a wealth of information that needs to be extracted and that can be analyzed in different ways to understand how the single subsystem behaves and even retrieve information about the behavior of the overall system. In particular, considering the generated logs, it is possible to:

  1. Analyze the behavior of a single subsystem looking at the data generated by each one in an independent way;
  2. Analyze the overall behavior of the system looking at the correlations among the data generated by the different subsystems

Such data are very useful to understand the behavior of a system and are often used to perform post-mortem analysis when some failures happen. However, such data could also be used to understand in a more comprehensive way how the system behaves through a real-time analysis able to monitor continuously the different subsystems and their interactions. In particular, it is possible to focus on preventing failures through predictive maintenance triggered by specific analysis.

Making predictions about system failures analyzing log files is possible but such predictions are strictly related to some characteristics of such files. In particular, some very important characteristics are: data generation frequency, information details, history.

The data generation frequency needs to be related to the prediction time and the time required to take proper actions. For example, if we need to detect a failure and take proper action in a few minutes, we need to use data generated with a higher frequency (e.g., in the scale of the seconds) and we cannot use data generated with a lower one (e.g., in the scale of the hours). This requirement affects the ability to make predictions and their usefulness to implement proper maintenance actions.

The information details provided need to include proper granularity and meaningful massages. In particular, it is important to get detailed information about errors, warnings, operations performed, status of the system, etc. The specific details required are tightly connected to the specific predictions that are needed. Moreover, the finer the granularity of the information, the higher are the chances of being able to create a proper prediction model.

High quality data history is required to build proper prediction models. However, just having a large dataset is not enough. Historical data need to be representative of the operating environment and include all the possible cases that may happen during  operations. In particular, it is required to have information about the log entries and the actual behavior of the system to create a reliable model of the reality.

The requirements described are just a first step towards the definition of a proper predictive maintenance model but they are essential. Moreover, the proper approaches and algorithms need to be selected based on the specific system and the related operating conditions.

Xtel Wireless ApS

Xtel-MANTIS

Xtel Wireless is a Danish company specialized in ultra-low power solutions and technologies. With a specialized knowledge and competences in developing state-of-the-art IoT (Internet of Things) products and wireless core technologies, Xtel Wireless has an expertise in developing innovative products. Xtel Wireless employs 15 engineers with an average experience of 15 years in developing high-tech and embedded solutions, as well as having design and innovation competences in the team.

Relevant Expertise for the project:

Xtel Wireless has an expertise in developing innovative products. In the IoT business segment, Xtel Wireless has developed a platform for wireless sensor modules. This platform has unique features in matter of performance, price level and size.

Role in the project:

Xtel Wireless will be involved in developing sensors for typical domestic households to provide the project with data, monitoring humidity, CO2-levels, temperature and VTO in the residential buildings. The aim is to collect and distribute the data, as well as present the data motivationally to the residents hereby encouraging changed energy behavior.

Sataservice Oy

Sataservice MANTIS

Sataservice (Group) Oy provides industrial maintenance services and projects for customers to reach high level of performance. The Group includes following companies, Sataservice Oy and Rauman Sähkökonehuolto Oy.

Both companies have perfect service portfolio and co-operation. Sataservice was founded in 2003. The headquarter is in Rauma, Finland. The company has been growing every year and for the moment we have approximately 350 employees. The turnover 2016 is around 35 M€. We are ISO 9001:2008 certified by Bureau Veritas.

The company have expertise of demanding environments which means that mainly our customers are in businesses that have demanding regulations and laws that have to be followed, for instance the food industry where we are involved with living animals and in the end of the process we handle ready made food. We are also involved in the medical business with its own regulations. We mainly have customers that have outsourced their maintenance, either production or facility maintenance or both. We do also lot of projects such as modernizations of old equipment that ensures that the lifecycle can be extended and the productivity is high for the customer.

We have expertise in mechanical, electrical, automation, HVAC and cranes. Rauman Sähkökonehuolto is specialized in electrical motors, pumps and gears and helps us to keep up the customers productivity, while we can manage ourselves most of all maintenance areas and can minimize unnecessary waiting time. At the moment most of our customers are in Finland but we are aiming to expand abroad when we find the right partners and customers.

Relevant Expertise for the project:

We have a really broad expertise in maintenance of production equipment, especially machining, packing machines, electrical motors, automation and so on. We have divided our business in different technologies and all of those have a dedicated leader for instance for cranes, HVAC and automation.

Role in the project:

We have a good possibility to provide environments to test use-cases. We want to develop ourselves our IoT and CBM strategy and clarify what we can and should offer our customers. The aim is that everyone, meaning our customers, ourselves and possibly third parties, sees it as a win-win situation. We also want to find good long term partners to execute the strategy.

Neogrid Technologies ApS

Neogrid MANTIS

Neogrid Technologies ApS, is an entrepreneur company working with intelligent energy visualisation, monitoring and control, utilising knowhow within wireless communication technology to develop Smart Grid solutions.

Neogrid Technologies develop intelligent forecast based energy management systems for both consumers, energy companies and 3rd party actors, enabling home energy management capabilities for house owners and large scale monitoring – allowing optimised individual and aggregated controlling.

This consists of a data acquisition and IoT platform and online control-interface. It includes advanced analytics, which are able to forecast energy consumption and flexibility, based on individual house modelling and advanced model predictive control.

The aim is to enable the user to monitor, plan and even shift energy consumption based on knowledge of price, average consumption patterns and conditions, allowing for cost reduction and increased control and overview. The integration between hardware and software goes well with the background and experience of the people behind Neogrid Technologies.

Furthermore, Neogrid Technologies develop and deliver a cloud-based system for monitoring and optimized individual and aggregated control of heat pumps and district heating buildings based on requirements from the energy system actors and 3rd party actors.

Relevant Expertise for the project:

Neogrid Technologies have by participation in selected research project gained more than 6 years’ experience developing control strategies and cloud-applications for heat pumps and district heating focusing on the power and district heating system and end user requirements. Through this work, Neogrid Technologies have gained deep knowledge and experience regarding practical challenges arises when 80 live heat pump installations are centrally controlled.

Role in the project:

Neogrid will Participate in WP7, task 7.3, where an integrated energy system comprising of energy production, distribution and energy consumption of buildings (electricity and district heating) can be forecasted, optimized and moved according to various needs in the energy system.

Via aggregated control of a number of buildings (district heating and heat pumps), besides what is mentioned above, the predicted energy consumption can be taken into account when planning maintenance outage/interruptions so the influence or disadvantage of the heating service towards the consumers is minimized.

The above mentioned IoT platform Neogrid will develop and deliver services where the Product PreHeat and aggregator among other will be used to simulate and analyze the energy system with respect saving energy, monitoring and predicted maintenance.

1st CREMA/C2NET Industrial Workshop

The 1st CREMA/C2NET Industrial workshop will take place the 24th November at Orona Fundazioa facilities located in Hernani (Basque Country – Spain). The event, organised by CREMA and C2NET H2020 EU projects, is intended to present future trends of European Industry especially those related to digitalization technologies applied to manufacturing. High levels speakers from the Basque Government, the European Commission, and the Industry sector (ill give their expert vision.

Moreover, CREMA and C2NET will present findings generated in both projects highlighting their approaches to meet above challenges. Presentations and practical demonstrations will be made by partners of both projects to present innovative solutions based on digital platforms in the Cloud to boost collaboration among manufacturing companies. Advanced Cloud technologies and applications will be shown to allow manufacturing companies faster and more efficient decision making for a better use of their manufacturing assets. Different business models and exploitation strategies followed by both projects to bring their outcomes to the market will also be presented.

Some MANTIS partners such as MGEP, IKERLAN, TEKNIKER, MCC, FAGOR ARRASATE and GOIZPER will attend this event to know other EU projects approaches to deal with common research areas and to make new contacts for potential collaboration actions in the future.

There is still time for registration accessing the website of the event: http://www.crema-c2networkshop.com/. We encourage you to do so.

Agenda:

09:00 – 09:30

Registration

09:30 – 09:40

Opening session

Welcome and event presentation

·       Eduardo Saiz, IK4-IKERLAN –  CREMA Project Researcher & C2NET Project Manager

Basque Government short talk

·       Alexander Arriola, General Director of SPRI/Basque Government

9:40 – 10:00

First Keynote: Industry 4.0 Implementation Strategy

·       Eduardo Beltrán, Innovation & Technology Director of MONDRAGON Corporation

10:00 – 10:15

Digitising European Industry

·       Max Lemke, Head of Unit Components and Systems, European Commission, DG CONNECT

10:15 – 11:00

The CREMA / C2NET viewpoint on future Industrial trends and a taste of the services that can be deployed in the Industrial Arena

·       Tim Dellas, ASCORA – CREMA Project Coordinator

·       Jorge Rodriguez, ATOS – C2NET Project Coordinator

11:00 – 11:30

Coffee Break

11:30 – 12:15

CREMA – Cloud Services for the Manufacturing Sector

·       Jon Rodriguez, FAGOR ARRASATE – CREMA Use Case I: Machinery Maintenance WP Leader

·       Mikel Anasagasti, GOIZPER – CREMA Use Case I: Machinery Maintenance Partner

·       Aizea Lojo, IK4-IKERLAN – CREMA Project Manager

·       Jessica Gil, TENNECO – CREMA Use Case II: Automotive WP Leader

12:15 – 13:00

C2NET – The complete Networked solution for Industry

·       Raúl Poler, UPV – C2NET Processes Optimization of Manufacturing Assets WP Leader

·       Carlos Agostinho, UNINOVA – C2NET Continuous Data Collection Framework WP Leader

·       Jacques Lamothe, ARMINES – C2NET Tools for Agile Collaboration WP Leader

13:00 – 14:00

Lunch break

14:00 – 14:45

Second Keynote: Industry 4.0 – How to master challenges to exploit new business opportunities

·       Stefan Zimmermann, Head of Global Vertical Manufacturing, Retail and Transportation market at ATOS

14:45 – 15:15

Interactive Session: Feedback from audience to capture the Pros and Cons if Industry 4.0. What hurdles need to be overcome  from an Industrial viewpoint

·       Moderator: Gash Bhullar, TANet – CREMA Impact WP Leader

15:15 – 15:45

CREMA / C2NET Response to the Interactive Session and potential solutions to the Industry 4.0 Implementation and Deployment Strategies

·       Moderator: Gash Bhullar, TANet – CREMA Impact WP Leader

15:45 – 16:00

Coffee Break

16:30 – 17:00

Panel discussion

·       Moderator: Gash Bhullar, CREMA TANet – Impact WP Leader

 

Closing remarks

·       Eduardo Saiz, IK4-IKERLAN –  CREMA Project Researcher & C2NET Project Manager